The Probabilistic Hitting Set Paradigm: a General Framework for Search and Detection in Dynamic Social Networks
نویسندگان
چکیده
We formulate and study the Probabilistic Hitting Set Paradigm (PHSP), a general framework for design and analysis of search and detection algorithms in large scale dynamic networks. The PHSP captures applications ranging from monitoring new contents on the web, blogosphere, and Twitterverse, to analyzing influence properties in social networks, and detecting failure propagation on large electronic circuits. The Probabilistic Hitting Set Paradigm (PHSP) defines an infinite time generating process that places new items in subsets of nodes, according to an unknown probability distribution that may change in time. The freshness or relevance of the items decay exponentially in time, and the goal is to compute a dynamic probing schedule that probes one or a few nodes per step and maximizes the expected sum of the relevance of the items that are discovered at each step. We develop an efficient sampling method for estimating the network parameters and an efficient optimization algorithm for obtaining an optimal probing schedule. We also present a scalable solution on the MapReduce platform. Finally we apply our method to real social networks, demonstrating the practicality and optimality of our solution.
منابع مشابه
A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کاملProbabilistic Integrated Planning of Primary and Secondary Distribution Networks based on a Hybrid Heuristic and GA Approach
The integrated planning of distribution system reveals a complex and non-linear problem being integrated with integer and discontinues variables. Due to these technical and modeling complexities, many researchers tend to optimize the primary and secondary distribution networks individually which depreciates the accuracy of the results. Accordingly, the integrated planning of these networks is p...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.03275 شماره
صفحات -
تاریخ انتشار 2015